Expertise

My research is mainly in Lie Theory and Representation Theory. In particular, I am interested in the following topics:

  • Lie (color) algebras
  • Finite p-groups and associated Lie algebras
  • Sporadic simple groups and simple Lie algebras in small characteristics
  • Classification of solvable Lie algebras
  • Lie coalgebras and Lie comodules
  • Lie bialgebras and Lie bimodules
  • Lie bialgebras and the classical Yang-Baxter equation
  • Leibniz algebras and Leibniz (co)homology
  • Hochschild (co)homology
  • Cyclic (co)homology
  • Quantum groups at roots of unity
  • Small quantum groups
  • Hopf algebras and the quantum Yang-Baxter equation
  • Hopf algebras and tensor categories
  • Frobenius algebras
  • Clifford algebras
  • Hecke algebras
  • Cherednik algebras
  • Symplectic reflection algebras
  • Poisson algebras
  • Poisson (co)homology
  • Algebraic K-theory
  • Invariant theory
  • Non-associative algebraic structures
  • Classification of algebras in low dimensions
  • Power sums and related functions
  • Plane algebraic curves
  • Geometry and kinematics of planar mechanisms
  • Mathematical foundations of quantum physics
  • Statistical physics

Subject Areas: Lie theory, representation theory.

Communities
Statistics, Mathematics
Degrees
PhD, University of Hamburg, Mathematics, 1989